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Abstract

In this paper, the cooling of a heat-generating surface by a stacking of porous media (e.g., metallic foam) through which fluid flows
parallel to the surface is considered. A two-temperature model is proposed to account for non-local thermal equilibrium (non-LTE). A
scale analysis is performed to determine temperatures profiles in the boundary layer regime. The hot spot temperature is minimized with
respect to the three design variables of each layer: porosity, pore diameter, and material. Global cost and mass are constrained. The
optimization is performed with a hybrid genetic algorithm (GA) including local search to enhance convergence and repeatability. Results
demonstrate that the optimized stacks do not operate in LTE. Therefore, we show that assuming LTE might result in underestimation of
the hot spot temperature, and into different final designs as well.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Optimization with genetic algorithms; Layered structure; Porous media; Cooling of electronics; Heat sink; Cold plate
1. Introduction

The potential of porous structures (e.g., metallic foam)
in heat transfer systems is currently undergoing growing
interest due to their large surface area per unit of volume.
For example, Jeng et al. (2001) investigated the perfor-
mance of a channel filled with metallic foam for electronic
cooling applications. Jeng and Tzeng (2005) studied the
performance of a heat sink made of aluminum foam with
impinging jets, and obtained a thermal resistance 30%
smaller than the one of traditional heat sink of similar size.
Lage et al. (1996) introduced a porous layer in a cold plate
used in radar systems. Compact heat exchangers with metal
foam have been studied by Boomsma et al. (2003a,b) and
Boomsma and Poulikakos (2001). The use of porous struc-
tures in heat exchangers has also been studied by Tadrist
et al. (2004).
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The difficulty in modeling heat and fluid flow within
porous structures is due to the complexity of the flow as
it proceeds through the intricate network of pores and cap-
illaries. Even though Boomsma et al. (2003a) modeled the
flow through the metal foam using periodic boundary con-
ditions, one usually relies on spatially averaged quantities
and effective properties to do so. The characterization of
metallic foams for determining its effective properties is
therefore an active field (Giani et al., 2005; Crittenden
and Cole, 2005). Boomsma and Poulikakos (2001) showed
that despite of a high foam porosity, the overall effective
thermal conductivity of a foam heat exchanger is governed
by the solid phase. They derived some expressions for the
foam effective conductivity.

When used as thermal enhancers, porous structures are
designable to some extent (Bejan, 2004a) just as the shape
of fins can be varied for maximizing its performance
(Bobaru and Rachakonda, 2004; Jany and Bejan, 1998).
The design variables include in particular the pore network
structure, pore sizes, solid materials, and porosities. Boom-
sma et al. (2003b) investigated experimentally the effect of
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Nomenclature

asf interfacial surface area per unit volume, m2 m�3

Be Bejan number
cp heat capacity, J kg�1 K�1

c cost per unit of mass, $ kg�1

C cost, $
D diameter of the pipes
h interstitial heat transfer coefficient, W m�2 K�1

k thermal conductivity, W m�1 K�1

K permeability, m2

L length, m
M 0 mass per unit of length, kg m�1

N number of layers in the y-direction
Nu Nusselt number
P pressure, Pa
q00 heat flux, W m�2

S number of cells in the x-direction
T temperature, K
u velocity, m s�1

x; y Cartesian coordinates, m

Greek symbols

a thermal diffusivity, m2 s�1

D difference
/ porosity
c penalty coefficient
l viscosity, kg m�1 s�1

q density, kg m�3

Subscripts

eff effective
f fluid
j layer index
s solid
w wall
0 constraint value

Superscript

� dimensionnless quantity
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Fig. 1. Schematic diagram of the system.
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compression applied to the porous structure on the overall
performance and found that with the same required pump-
ing power, compressed metallic foam heat exchangers
generated thermal resistances that were 2–3 times lower
than the best commercially available heat exchanger tested.
Wildi-Tremblay and Gosselin (2007) minimized the hot
spot temperature of a porous layered stacking varying
the porosity and materials, assuming local thermal equilib-
rium (LTE).

The consideration of non-local thermal equilibrium in
porous media modeling has gained more attention in the
past years (Amiri and Vafai, 1994; Jiang et al., 1999; Lee
and Vafai, 1999; Jiang and Ren, 2001; etc). Amiri et al.
(1995) thoroughly studied the effect of various flows, of
thermal dispersion, of variable porosity and of different
boundary conditions on the thermal response of a porous
structure submitted to forced convection using a two-equa-
tion model. Jiang et al. (1999) compared numerical and
experimental results using both the LTE and non-LTE
assumptions for a porous media composed with glass
packed beds while considering thermal dispersion. They
observed that the thermal equilibrium model was inade-
quate in the case of water flow in metallic porous media.

In this paper, we use a two-temperature model for opti-
mizing the solid materials, porosities, as well as pore diam-
eters in a stack of porous layers. The optimization of the
pore diameters is not possible without considering non-
LTE. The objective is to minimize the hot spot temperature
under mass and cost constraints. The optimization is per-
formed with a genetic algorithm (GA) confined with local
search. The optimal designs are compared with those
obtained assuming LTE in order to assess the influence
of such an assumption of the final results.
2. Problem formulation and mathematical model

The geometry of the problem studied is depicted sche-
matically in Fig. 1. The structure is composed of a stack
of N porous layers at the base of which a constant heat flux
q00 is applied. The top wall of the structure is assumed adi-
abatic. The heat is dissipated by conduction through the
solid matrix and is brought out of the system by convection
due to fluid flow in the pores. To each layer are assigned a
material, a porosity / and a pore diameter D. The porosity
is defined as the ratio of the volume occupied by the fluid to
the total volume of the layer. These three parameters will
be optimized in order to minimize the hot spot temperature
Tmax. In Table 1, we list the four materials considered in
the study, as well as their respective properties and cost.
As several designs will be tested during the optimization
process, the model on which we will rely for the evaluation



Table 1
Properties (normalized to that of air at 300 K (Incropera and DeWitt,
2002)) and cost (normalized to that of iron (www.metalprices.com, as of
October 26, 2005.)) of the considered materials

Material ~q ~k ~c

Aluminum 2327.5 9011.4 8.9
Copper 7691.6 15 247.2 18.7
Iron 6776.3 3049.4 1
Brass 7344.6 4182.5 11.6
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of the thermal performance of a design should be as simple
as possible in order to limit the computational time.

The modeling of fluid flow through the sinuous paths of
the porous structure requires various assumptions. A pile
of pores of diameter D aligned in the flow direction axis
was chosen to model the porous structure. It should be
clear from that point that the porosity / and the pore
diameter D can be treated as independent design variables
for the internal porous structure considered. For example,
increasing the number of identical pores per unit of volume
will increase / but does not affect D. Similarly, two samples
with the same porosity can have pores with different diam-
eters. Other porous structures could be considered in future
work resulting in different relationships between the ther-
mofluid properties and internal porous structure. The pro-
cedures and ideas explored in this paper would still apply.
The flow is considered unidirectional in the x-direction. It
is the imposed pressure drop between the system inlet
and outlet, DP, that is responsible for the fluid flow. The
flow regime is assumed to be laminar, and Darcy’s law
(Bejan, 2004b) is used to determine the spatially averaged
fluid velocity in the porous layers:

uj ¼
KjDP
lL

ð1Þ

where Kj is the jth layer permeability and L, the system
length (Fig. 1). The permeability Kj represents the material
capability to let the fluid flow. For the porous architecture
considered in the current study, the porosity–permeability
relation is determined straightforwardly by calculating
the mass flow rate generated in the pile of pores for a fixed
pressure drop and comparing the result with Darcy law
(Bejan, 2004b; Nield and Bejan, 1991), Eq. (1), leading to

Kj ¼
/jD

2

32
ð2Þ

Because of the anisotropic arrangement of the solid and
fluid phases in the porous medium, the following relation
gives a fair approximation of the equivalent thermal con-
ductivity (Pham and Torquato, 2003):

k ¼ ks
ð1� /Þ
ð1þ /Þ ð3Þ

which is justified by the fact that the solid conductivity is
much larger than the one of the fluid. Eq. (3) gives the
equivalent conductivity along the y-direction. In the
x-direction, convection heat transfer prevails and thus,
the thermal conductivity is neglected, which means that
the local Peclet number should be larger than 1.

Finally, the viscous dissipation in the pores is considered
negligible and the properties are assumed constant.

As mentioned in Section 1, we want to assess the impor-
tance of non-local thermal equilibrium within the porous
structure. Therefore, a two-equation model is required to
describe the problem as the temperature of the solid and
fluid phases are different. Accounting for the above-men-
tioned simplifications, two energy equations were devel-
oped, one for Ts and one for Tf (Khashan et al., 2006):

o

oy
kj

oT s

oy

� �
þ hasfðT f � T sÞ ¼ 0 ð4Þ

ðqcpÞf
oðujT fÞ

ox
¼ hasf ðT s � T fÞ ð5Þ

where h and asf are respectively the pore internal heat trans-
fer coefficient and the interfacial surface area per unit vol-
ume. For the porous geometry considered, it can be shown
that

asf ¼
4/
D

ð6Þ

For convenience, the governing equations, Eqs. (4) and (5),
were non-dimensionalized as follows:

o

o~y
~kj
ð1� /Þ
ð1þ /Þ

oeT s

o~y

" #
þ 4Nu/eD2

ðeT f � eT sÞ ¼ 0;

in the solid phase ð7Þ

BeeK j
oeT f

o~x
¼ 4Nu/eD2

ðeT s � eT fÞ;

in the fluid phase ð8Þ

using the dimensionless variables

~x; ~y ¼ x; y
L
; eT s; eT f ¼

ðT s; T fÞ � T 0

q00L=kf

; eK j ¼
Kj

L2
¼ /eD2

32

ð9Þ

Be ¼ L2DP
afl

; ~k ¼ ks

kf

; Nu ¼ hD
kf

ð10Þ

In the above equations, Be and Nu are the Bejan and Nus-
selt numbers, respectively. For most of the results pre-
sented in the paper, Nu was set to 3.66 (Çengel, 2003).
This value corresponds to the Nusselt number for ther-
mally fully developed flow within a tube subject to constant
surface temperature. In the present case, we have neither a
fixed surface temperature nor a fixed heat flux on the pore
surface. However, it is common practice in similar situation
to use a number of order 4 for Nu as an approximation,
hence Nu = 3.66 � 4 (Bejan, 2004b, 2000; Çengel, 2003;
Incropera and DeWitt, 2002). The numerical solving of
Eqs. (7) and (8) will result in a temperature distribution
for each of the solid and fluid phases. A unique solution
will be obtained using the boundary conditions
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eT fð0; ~yÞ ¼ 0; ~k
1� /
1þ /

� �
oeT s

o~y
¼ �1 at ~y ¼ 0;

oeT s

o~y
¼ 0 at ~y ¼ eH ð11Þ

The minimization of eT max will be performed under global
mass and cost constraints. Only the mass of the solid phase
needs to be taken into account when evaluating the global
mass of the stacking as the density of the air is much smal-
ler than the one of the solid phase materials, Table 1. In
other words, the actual mass eM of the heat sink is the sum-
mation of the mass of the solid phase of each porous layer.
The value of eM must be equal or smaller than a specified
value eM 0 that we do not want to exceed,

eM ¼ M 0

qfL
2
¼
XN

j¼1

~qjð1� /jÞD~yj 6
eM 0 ð12Þ

where D~yj is the thickness of the jth layer. It is also possible
to consider a total cost constraint, which is the summation
of the price associated with each layer,

eC ¼XN

j¼1

~qj~cjð1� /jÞD~yj 6
eC0 ð13Þ

where ~cj is the relative price per unit mass. The values of ~cj

for the four materials considered in this study are reported
in Table 1. In Eq. (13), eC0 is the threshold value of the total
price that we do not want to exceed.
3. Numerical calculation of heat and fluid flow

The calculation domain is divided into quadrilateral
control volumes uniformly distributed over the entire
domain and at the center of each sits a grid point. The inte-
gration of the coupled non-dimensionalized differential
equations, Eqs. (7) and (8), is performed on these control
volumes to obtain the solid and fluid temperatures
ðT s; T fÞ at each node. The grid is made of Nx cells in the
axial direction, i.e. Nx cells per unit length along the x-
direction, and of eH N x cells in the y-direction so that the cell
density is the same in both directions. As pointed out ear-
lier, all the cells that compose a physical layer share the
same properties ð/; ~q; ~kÞ. At the boundaries of the domain,
the nodes are located directly on the boundary, resulting in
half-sized control volumes.

The dimensionless governing equations were discretized
through the application of the finite volume method (Pat-
ankar, 1980). An upwind differencing scheme was used to
discretize the convective term. Linear interpolation func-
tions for the temperature between consecutive grid points
were assumed for the conductive term discretization. In
order to accurately handle the abrupt changes of the ther-
mal conductivity encountered when successive layers are
made of different materials, the harmonic mean was chosen
to define the equivalent thermal conductivity at the control
volume interfaces. The discretization results in two coupled
systems of equations: one for eT s and one for eT f . A column-
by-column approach is used to solve the equations, result-
ing in a diagonal matrix for eT f and a tridiagonal matrix foreT s at each column (x-position) of the domain. Starting with
an initial guess and sweeping from left to right, we first
evaluate the fluid temperature in a column of cells. The
obtained values for eT f are used to determine the solid tem-
peratures of the column in consideration. These fluid and
solid temperatures then contribute to the resolution of
the temperatures in the next column. Sweepings of the
domain continue until convergence. In this paper, conver-
gence is declared when the relative difference between the
maximal temperature and that from the previous iteration
becomes smaller than 10�6. To foster convergence, over-
relaxation was included in the algorithm.

A mesh independence study is necessary to ensure the
accuracy of the results. The maximal temperature is first
found for a relatively small value of Nx. Nx is then doubled
and eT max is recalculated. The mesh refinement goes on until
further mesh density doubling results in a eT max variation
smaller than 1%. We concluded that for a porosity of 0.5,
60 control volumes per length unit are sufficient to describe
well the problem when 1011

6 Be 6 1013. Moreover, it was
observed that a larger porosity requires more control vol-
umes per unit length. In fact, when the porosity is set equal
to 0.9, 60, 120 and 240 are needed for respective Bejan
numbers of 1011, 1012 and 1013. As the porosities will vary
during the optimization process, we selected the large mesh
density obtained with large porosity values.

4. Scaling analysis and validation

In order to validate the numerical model presented
above, we developed scaling equations for the solid and
fluid temperatures evaluated at the wall in the thermal
boundary layer regime. The integral method was used;
the dimensionless governing equations were integrated
from ~y ¼ 0 to ~y ¼ ~d, the thickness of the thermal boundary
layer. Integrating the first term of Eq. (7) yieldsZ ~d

0

o

o~y
~k
ð1� /Þ
ð1þ /Þ

oeT s

o~y

" #
d~y ¼ 1 ð14Þ

where the boundary conditions, Eq. (11), have been in-
voked. Therefore, the integration of the second term of
Eq. (7) results inZ ~d

0

4Nu/eD2
ðeT f � eT sÞd~y ¼ �1 ð15Þ

Finally, the integration of Eq. (8) along with Eq. (15)
means that:Z ~d

0

BeeK oeT f

o~x
d~y ¼ 1 ð16Þ

The integral method requires that we specify a realistic
temperature profile in the thermal boundary layer. In this
paper, we assumed linear temperature profiles:



G. Leblond, L. Gosselin / Int. J. Heat and Fluid Flow 29 (2008) 281–291 285
eT fð~x; ~yÞ ¼ eT f ;wð~xÞð1� ŷÞ; ~y < 1 ð17ÞeT sð~x; ~yÞ ¼ eT s;wð~xÞð1� ŷÞ; ~y < 1 ð18Þ

where the subscript w stands for wall, and

ŷ ¼ ~y
~d

ð19Þ

Using Eq. (17) and the heated wall boundary condition, we
find that the solid wall temperature can be expressed as

eT s;w ¼
~d
~k�
; ð20Þ

where ~k� denotes ~kð1� /Þ=ð1þ /Þ. The appraisal of Eqs.
(15) and (16), with the application of Eqs. (17)–(20), gives
an approximation of the thermal boundary layer thickness
as well as of the solid and fluid wall temperatures:

~dð~xÞ ¼ 2~k�~x

BeeK
 !1=2

ð21Þ

eT s;w ¼
2~x

BeeK~k�

� �1=2

ð22Þ

eT f;w ¼
2~x

BeeK~k�

� �1=2

�
eD2

2Nu/
BeeK
2~k�~x

 !1=2

ð23Þ

It is worth noting that the second term of Eq. (23) repre-
sents the difference between eT s;w and eT f;w. It is negligible
when local thermal equilibrium applies. This scaling analy-
sis reveals that non-LTE prevails when eD is large and when
Nu is small.

In order to determine the range of validity of our model,
we begin by relating the Bejan number to the local Rey-
nolds number in the pore and fluid Prandtl number,

Re ¼ UD
m
; Prf ¼

m
af

ð24Þ

In Eq. (24), U is the local velocity in a pore. We can relate it
to Darcy’s spatially averaged fluid velocity: U = u//. Com-
bining Eq. (24) with Eqs. (9) and (10), we obtain:

Re ¼ Be
eD3

32Prf

ð25Þ

For assuring the validity of our model, the flow in the pores
needs to stay laminar, which translates in Re < 2300 (Be-
jan, 2004b). With Prf � 0.7 (air) and eD ¼ 10�3, this leads
to an upper limit for the Bejan number, i.e. Be < 5 · 1013.
Most of our simulation were performed with Be = 1011

(i.e., Re � 4.5 � O(1)). It is common to say that for Darcy
law to apply, the local Re should be of order 1 or smaller,
which is the case for most of our calculations. For
Re > O(1), Forchheimer flow usually prevails. In Forchhei-
mer regime, there is an additional contribution to the total
pressure drop (form drag due to solid obstacles) but the
Darcy–Forchheimer transition is smooth (Nield and Bejan,
1991). However, with the porous structure considered here
(pores aligned in the direction of the flow), this additional
effect is clearly negligible as no ‘‘obstacle’’ is encountered
by the flow. Therefore, the range of validity of Darcy law
extends above Re � O(1), because of the ‘‘special’’ internal
structure of this porous medium. This is why more elabo-
rate models are not required, as long as Be < 5 · 1013.
The lower limit in terms of Be for the model validity is im-
posed by the requirement of a fully developed flow within
the pores. In terms of our dimensionless variables, the en-
try zone length is small compared to L when (Bejan, 2004b,
Chapter 3),eLentry � 0:05RePreD � 1 ð26Þ

oreLentry � 10�3BeeD4 � 1 ð27Þ

Therefore, for the model to be valid, the scale analysis
shows that eD has to be smaller than �0.01, 0.006 and
0.003 for Bejan numbers of 1011, 1012 and 1013, respec-
tively. It could be shown that these limiting values are
the same as that for obtaining a laminar flow in the pores
in an order of magnitude sense.

We validated our numerical model with the scale analy-
sis presented above. A one-layer aluminum structure with
/ = 0.5, eD ¼ 0:001 and Be = 1011–1013 was used for the
validation test. The value of eH was increased to 5 in order
to obtain a temperature value inferior to 1% of the hot spot
temperature in the upper right corner (boundary layer
regime). The solid and fluid temperatures were calculated
with the numerical model presented in Section 3. We plot-
ted both solid and fluid numerical temperatures evaluated
at the heated wall as a function of ~x1=2 for different Bejan
numbers (Fig. 2). The values of the fitting curve slopes
obtained numerically (0.0005, 0.0002 and 0.00005 for both
solid and fluid phases, for Bejan numbers of 1011, 1012 and
1013, respectively) are of the same order of magnitude as
the ones obtained analytically with Eqs. (22) and (23)
(0.0007, 0.0002 and 0.00005 for the solid phase and
0.0007, 0.0002 and 0.00006 for the fluid phase).

From Eqs. (9), (22) and (23), we deduce that the differ-
ence between the solid and fluid temperatures at the wall of
a thermal boundary layer (thermal boundary layer regime)
is proportional to eD3. Numerical results of eT s;w;max�eT f; w;max as a function of eD3 for Be = 1011 displayed in
Fig. 3 support our scale analysis.

Another validation test can be done by comparing the
numerical maximal temperature in a boundary layer regime
with the one defined by Eq. (22). By analyzing the latter, we
observe that eT s;w;max is obtained when ~x ¼ 1: Furthermore,
one would expect the hot spot temperature to be propor-
tional to ðBeeK~k�Þ�1=2 with a coefficient of proportionality
of order 1. The numerical results displayed in Fig. 4 are
in excellent agreement with the analysis as we obtain a
value of 1.1211 for the coefficient of proportionality.

Finally, from Eqs. (7) and (8), we anticipate to observe
local thermal equilibrium if the pore internal Nusselt num-
ber was largely increased. In that limit, eT s and eT f should be
equal. We compared the maximal temperature found for
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large Nu with the one obtained by Wildi-Tremblay and
Gosselin (2007) who considered the LTE assumption to
solve a problem similar to the one detailed in this paper.
Note that this increase of Nu is a numerical artifact to val-
idate the code. Nu could be increased in the turbulent
regime, but then the fluid flow calculations would have to
be adapted. Using one layer of aluminum with / = 0.5,
Be = 1011, eH ¼ 1 and eD ¼ 0:009, we found a relative dif-
ference inferior to 1% between Wildi-Tremblay and Goss-
elin’s maximal temperature value and our eT s;max as the
Nusselt number reaches a value of 350. For these parame-
ters, the relative difference between eT s;max and eT f;max is as
well within a 1% range.
5. Optimization procedure

In the previous sections, we presented how we numeri-
cally evaluate the solid and fluid temperatures in a porous
layered domain for a given set of parameters. In this part of
the paper, we give a brief description of the optimization
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toolbox based on genetic algorithms (GA), that will be
used to optimize the architecture of the structure, i.e. min-
imize the hot spot temperature while considering mass and
cost constraints. For a more detailed explanation about the
toolbox, consult Renner and Ekárt (2003).

The GA starts by randomly producing the designs (i.e.,
chromosomes) of the initial population. In this paper, the
initial population is made of 20 individuals. Each design
is defined by a set of 3N parameters, N being the number
of layers of the porous structure. The porosity /, the dimen-
sionless diameter eD and the material correspond to the
three design variables per layer considered in the present
study. To attain sufficient precision, we coded /, eD and
the material with 4, 4 and 3 bits, respectively. Three bits
were used to code the material to include the possibility
(added to the four possibilities associated with the four
materials considered) for the GA to assign ‘‘void’’ to a
layer. Based on the fitness of each individual of the initial
population, a stochastic universal sampling strategy (SUS)
is then employed to determine which designs will ‘‘repro-
duce’’ to yield the next generations. The following function
F is the actual objective function that is used for the optimi-
zation in order to take into account the mass and cost
constraints:

F ¼
eT max

ðBeeD2
optÞ

�1=2
þ cM max

eM � eM 0eM 0

 !
; 0

" #

þ cC max
eC � eC0eC0

 !
; 0

" #
; ð28Þ

where eDopt is the optimal dimensionless diameter (for de-
tails of its value determination, see Section 6), and cM

and cC are the penalty coefficients set equal to 1. All three
terms of Eq. (28) are of order 1 so that the GA is more
likely to properly reject the designs that do not respect
the constraints. The hot spot temperature is normalized
with ðBeeD2

optÞ
�1=2, the scale of eT s;max in the thermal bound-

ary layer regime. From the optimization toolbox processes
of crossover and mutation performed on the selected indi-
viduals, new designs arise. (In this paper, we used 2 cross-
over points and a probability of 0.05 for mutation to take
place.) Reinsertion of these new designs in the population
is then executed based on an elitist strategy, i.e. the 4 best
designs of the previous population are ensure to propagate
in the next generation. This new population then becomes
the initial one for the next generation, and so on until con-
vergence is reached. The criterion chosen to declare conver-
gence is when 300 consecutive generations do not show any
improvement in eT s;max.

Measures were taken to improve the GA convergence
rate. A really effective one is the creation of a database as
the GA runs to prevent it from recalculating the objective
value of designs that have already been generated earlier
in the algorithm. Furthermore, local search was introduced
in the algorithm. In the present study, it is performed on all
individuals at every 10 generations. For each design, the
performance of two neighboring designs is calculated,
and the fittest individual among the actual design and its
two neighbors is reintroduced in the population. To deter-
mine the first neighbor, a certain number of design vari-
ables (porosities and/or diameters) are randomly chosen.
Then, the value of each of these design variables is replaced
randomly by the closest upper or lower value for this
design variable. This procedure defines a direction in the
design space from the actual design to the first neighbor.
The second neighbor is the design located in the opposite
direction in the design space.
6. Optimization of the pore diameters

Before optimizing the stacking with respect to the poros-
ities and materials, we measured the effect of the pore
diameter eD on the hot spot temperature obtained with
the numerical code described in Section 3. The analysis
was performed for a one-layer structure of porosity / set
equal to 0.5 for Bejan numbers between 1011 and 1013.
Fig. 5 displays the effect of the pore diameter on eT s;max

for the case of aluminum, Be = 1011. The figure clearly
shows that there is an optimal value of eD that leads to a
minimal hot spot temperature (indicated by a small white
circle in Fig. 5). This could have been anticipated. Looking
at the solid phase dimensionless governing equation (7), we
realize that a larger diameter means a higher fluid flow
velocity but a smaller heat transfer coefficient. Thus, there
is a tradeoff eD-value for the cooling to be as efficient as
possible. The values of eDopt obtained numerically with
/ = 0.5 (aluminum) are 0.0085, 0.005 and 0.003 for respec-
tive Bejan numbers of 1011, 1012 and 1013. It should be
pointed out that for given parameters, the optimal diame-
ter, eDopt, does not yield local thermal equilibrium. In other



288 G. Leblond, L. Gosselin / Int. J. Heat and Fluid Flow 29 (2008) 281–291
words, optimal porous layered stacking does not operate
with LTE. Since the value of eD is a design parameter in
the GA, we would expect the GA to generate designs hav-
ing eD close to the eDopt found here for given Be and poros-
ity. Therefore, local thermal equilibrium should not be
encountered after the optimization is performed.
7. Optimal stacking with and without constraints

In this section of the paper, the GA was used to optimize a
layered structure submitted to various mass and cost con-
straints. GAs rely in part on probabilistic processes, and
therefore, two optimization runs with the exact same set-
tings can potentially lead to different final results. To mea-
sure the repeatability of the results, four different
simulations were performed for each set of constraints. A
stacking of three layers was chosen to execute the optimiza-
tion. Considering the number of bits associated with each
design variable (Section 5), this means that there are about
109 possible designs. The GA allowed us to optimize the sys-
tem by evaluating only a small fraction of these designs. The
optimal designs generated with Be = 1011 and eH ¼ 0:25 are
presented in Table 2.

In Table 2, # is the design number, G is the generation in
which the optimal design appeared in each of the 4 runs,
the subscript m refers to the minimized hot spot tempera-
ture and ds–f consists in the relative difference between
the maximal solid and fluid temperatures. The latter is cal-
culated as follows:

ds�f ¼
eT s;max ;m � eT f ;max ;meT f ;max ;m

ð29Þ
Table 2
Parameters of the fittest designs found by the GA for five sets of mass and co
The repeatability of the results greatly stands out from
Table 2. In fact, for 4 of the 5 sets of constraints considered
in the study, the same optimal design was generated for the
four simulations realized. This is likely due to the relatively
small size of the chromosomes describing each individual,
to the use of local search as well as to the limited design
space. Perfect repeatability is not met though for the
cost-constrained optimizations for which two different de-
signs were generated (#4a and #4b). Nevertheless the ther-
mal performances of the designs found in that case vary
only slightly. There is less than 5% of relative difference be-
tween the hot spot temperatures of the two designs found
by the GA. The one having the highest eT s;max ;m (#4b,
10.054 · 10�5) obviously does not correspond to the global
optimum for the specified parameters, i.e. the GA got
trapped in a local minimum. Other methods, the so-called
niching methods, exist to prevent the population from con-
verging too early to some local optimum (Renner and
Ekárt, 2003). A classification and a discussion of some of
these are presented in Mahfoud (1995). Local search and
the use of a database (Section 5) definitely helped the con-
vergence to be achieved faster. In 80% of the simulations
performed and described in Table 2, it took less than 50
generations for the GA to find the optimal design, which
means that less than 10�5% of the possible designs were
evaluated.

As shown from the last column of Table 2, the designs
generated by the genetic algorithm do not yield LTE.
Indeed, the values of ds–f, used here as a thermal equilib-
rium indicator, are quite far from zero. This result was
expected given the conclusion of the study on the effect
of the size of the pore diameter eD on the hot spot temper-
ature. From that study (Section 6), we obtained numerical
st constraints (non-LTE)
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values of the optimal pore diameter, eDopt, for various Bejan
numbers, porosities and materials. For Be = 1011, we had
found eDopt ¼ 0:0085 which is close to the value of
0.00868 assigned by the GA to the first layer of each opti-
mized design. The following layers were all assigned pore
diameters in the vicinity of eDopt as well. Another pattern
deduced from Table 2 is the increase of the porosity / as
the layers are more distant from the heated wall. This is
consistent with Bobaru and Rachakonda (2004) and Jany
and Bejan (1998) where optimizations of a fin mass-con-
strained profile are performed. The resulting fins are
thicker at the base and gradually thinner further from it.
That means that more solid near the heat-generating wall
provides a more efficient cooling.

Looking at the materials assigned by the GA in order to
get the fittest designs presented in Table 2, we see that when
it was not constrained, copper was attributed to each layer
(#1). This was predictable since copper is the most conduc-
tive material among the ones considered in the study (see
Table 1). When the GA had less freedom to morph, i.e.
when mass and/or cost constraints limited the design space,
the global optimum designs were all constituted with alu-
minum (#2, #3, #4a, and #5). That material represented
a good tradeoff in that case between heat transfer, mass
and cost features. We remark that for all cases, the GA clo-
sely satisfied the constraints (limit of constraints). For
example, when the cost constraint of 1300 was imposed,
Table 3
Comparison of the hot spot temperatures of various designs considering
either non-LTE or LTE

Design # eT max;m � 105

Non-LTE LTE

1 7.8752 5.2176
2 9.7361 6.7750
3 12.642 8.6416
4a 9.5865 6.7547
4b 10.054 7.1867
5 10.593 7.5814

Table 4
Optimal designs obtained by the GA assuming LTE with eD ¼ 0:0085 for vari
the global mass achieved was 1294.7 (#4a). To respect
the mass and cost constraints, we note that the GA
assigned higher porosities. If changes in the porosity are
not sufficient to meet constraints, the GA removes layers
by attributing them a porosity of 1 (no solid material).
By doing so, it indirectly optimizes the height of the stack-
ing, additionally to the porosities, diameters and materials.
This phenomenon was observed for the dramatically mass-
constrained optimization (design # 3 in Table 2). To
respect eM 6 50 while minimizing the hot spot temperature,
the GA took off the last layer. It should be pointed out
that as constraints are imposed (less freedom to morph),
the thermal performances of the optimal designs are
reduced.

8. Effect of non-local equilibrium

In this section of the paper, we used the results presented
in Wildi-Tremblay and Gosselin (2007) to show the effect
of non-LTE on the temperature distributions of a cooling
system. We started by evaluating the hot spot temperature
of the optimized designs listed in Table 2, this time using a
model assuming local thermal equilibrium (LTE). In Table
3 are presented the resulting minimized hot spot tempera-
tures as well as the ones obtained under non-LTE
(obtained in Section 7). We observe from Table 3 that
the hot spot temperature is smaller when local thermal
equilibrium is assumed than when it is not. There is 40–
50% of relative difference between the values obtained with
LTE and the ones evaluated with non-LTE. In other
words, assuming LTE will result in underestimating the
hot spot temperature. This supports again the finding of
the previous sections that optimal stacks operate far from
LTE.

Even though the values of eT max ;m varied significantly
depending on whether LTE was assumed or not, we wanted
to verify whether the design geometry optimized under LTE
assumption would differ from the ones that we obtained
when non-LTE was assumed (refer to Table 2). Therefore,
we optimized with the GA a three-layer system with the
ous sets of constraints
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same constraint sets as previously, but this time assuming
LTE. Under this assumption the diameter of the pore is
non-designable (Wildi-Tremblay and Gosselin, 2007).
Therefore, we imposed the optimal diameter found in Sec-
tion 6 in every layer. The optimization results are reported
in Table 4. We observe that the unconstrained problem (#1)
leads to a low porosity design (and thus approximately
three times heavier) compared with the one obtained previ-
ously (non-LTE). Similarly, the best design identified by the
GA under the cost constraint (#4) considered was less por-
ous and heavier than to the one in Table 2. On the other
hand, the designs obtained with the mass constraints (#2,
#3) and combined constraint (#5) were actually similar to
the ones presented before. We conclude that for highly con-
strained problems, the designs identified by the GA with
and without assuming LTE are similar (even though their
predicted levels of performance differ), while the optimal
design of less constrained problems is greatly influenced
by the LTE assumption.

9. Conclusions

In this paper, we used a hybrid genetic algorithm to
optimize a cooling system characterized by a stacking of
porous layers through which a coolant fluid and at the base
of which heat is generated. The objective was to minimize
the hot spot temperature of the porous structure while fac-
ing different global constraints. The material, porosity and
pore diameter of each layer represented the design vari-
ables. The pore diameter could be optimized for the porous
structure considered as a two-equation model was used to
account for the non-LTE assumption.

The optimized designs found by the algorithm shared
similar features. For instance, the layers further from the
heat-generating base were more porous than the ones clo-
ser to it. Moreover, all layers were attributed a pore diam-
eter value close to the optimal value obtained from a
numerical investigation. They were all essentially the same
since the optimal value depends mainly on the Bejan num-
ber. As expected, the more the structure was constrained,
i.e. the less freedom to morph it had, the highest was its
hot spot temperature (Bejan and Lorente, 2004). The glo-
bal mass and cost of each optimized constrained design clo-
sely satisfied the given constraints.

The size of the system had the possibility to be opti-
mized as well. In fact, the GA could indirectly optimize
the height of the stacked structure by removing layers,
i.e. set / = 1 in that layer. This dimension optimization is
the result of a competition between the different objectives
considered (small mass and/or cost and low hot spot
temperature).

In this study, we compared the hot spot temperature in
the designs resulting from the optimizations (non-LTE)
with the ones calculated if LTE is assumed (Wildi-Tremb-
lay and Gosselin, 2007). Assuming LTE can result in
underestimating the hot spot temperature or generate an
erroneous ‘‘optimal’’ design, which could lead to system
failures in practice. Therefore, it is preferable to let the
GA chose whether LTE should be present or not instead
of assuming it, i.e. to let the GA optimize the system in
regard of the local thermal equilibrium as well as of the
other design parameters. We can draw an analogy with
Gosselin (2005, 2006) in which the flow regime was opti-
mized rather than assumed in fluid networks and heat dis-
sipation structures.

Since radiation effects become important in processes
involving high temperatures (Al-Harbi, 2005) and that vis-
cous dissipation can reduce significantly the convection
heat transfer (Jiang and Ren, 2001), one could refine the
analysis presented here by including these effects in the
models. In further work, the optimal internal porous archi-
tecture of each layer could also be optimized. A database of
various options (e.g., packed spheres, cylinders or tetrakai-
decahedron, straight channels) and of their corresponding
permeability–porosity and conductivity–porosity relations
would then have to be created.
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